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Martingales, the definition

Definition 1.1 (Filtered space)

Here we follow the Williams’ book. [21] A filtered space
is (Ω, F , {Fn} ,P), where (Ω, F ,P) is a probability
space and {Fn}∞

n=0
is a filtration. This means:

F0 ⊂ F1 ⊂ F2 · · · ⊂ F

is an increasing sequence of sub σ-algebras of F . Put

(1) ?a1? F∞ := σ

(

⋃

n
Fn

)

⊂ F .

The reason that we use filtration so often is
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Martingales, the definition (cont.)

Theorem 1.2
?〈a2〉?

Given the r.v. X1, . . . , Xn and Y on the probability
space (Ω, F ,P). We define F := σ(X1, . . . , Xn). Then

(2) Y ∈ F ⇐⇒ ∃g : Rn → R, Borel s.t.

Y (ω) = g (X1(ω), . . . , Xn(ω)) .

This means that if X1, . . . , Xn are outcomes of an
experiment then the value of Y is predictable based on
we know the values of X1, . . . , Xn iff Y ∈ F , where
Y ∈ F means that Y is F -measurable.
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Martingales, the definition (cont.)

When we say simply "process" in this talk, we mean
"Discrete time stochastic process".

Definition 1.3 (Adapted process)

We say that the process M = {Mn}∞
n=0

is adapted to
the filtration {Fn} if Mn ∈ Fn.
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Martingales, the definition (cont.)

Definition 1.4
?〈a61〉?

Let M = {Mn}∞
n=0

be an adaptive process to the

filtration {Fn}. We say that X is a martingale if

(i) E [|Mn|] < ∞, ∀n

(ii) E [Mn|Fn] = Mn−1 a.s. for n ≥ 1

X is supermartingale if we substitute (ii) with

E [Mn|Fn−1] ≤ Mn−1 a.s. n ≥ 1.

Finally, M is a submartingale if we substitute (ii) with

E [Mn|Fn−1] ≥ Mn−1 a.s. n ≥ 1.
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Functions of MC

Remark 2.1
〈a10〉

Given a Markov chain X = (Xn) with transition

probability matrix P = (p(x , y))x ,y . We are also give a
function f : S × N → R satisfying

(5) a8 f (x , n) =
∑

y∈S
p(x , y)f (y , n + 1) .

Then Mn = f (Xn) is a martingale w.r.t. X . (We

verified this in the Stochastic Processes course. See [4,
Theorem 5.5].)

Károly Simon (TU Budapest) Markov Processes & Martingales A File 8 / 55



Functions of MC (cont.)

Given a Markov chain X = (Xn) with transition
probability matrix P = (p(x , y))x ,y .
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Functions of MC (cont.)

Definition 2.2 (P-harmonic functions)
?〈a12〉?

For an f : S → R:

(6) ?a6? Pf (x) :=
∑

y∈S
p(x , y)f (y).

We say that such an f is harmonic if

(i)
∑

y∈S
p(x , y)|f (y)| < ∞, ∀x ∈ S and

(ii) ∀x ∈ S, h(x) = Ph(x)

if we replace (ii) with ∀x , f (x) ≤ Pf (x) then f is
subharmonic .
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Functions of MC (cont.)

f is called superharmonic if −f is subharmonic. It
follows from Remark 2.1 that

Theorem 2.3
Let X = (Xn) be a Markov chain with transition
probability matrix P = (p(x , y))x ,y and let h be a
P-harmonic function. Then h(Xn) is a Martingale w.r.t.
X .
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Functions of MC (cont.)

Example 2.4
?〈a9〉?

Let X1, X2, . . . be iid with

P (Xi = 1) = p and P (Xi = −1) = 1 − p,

p ∈ (0, 1), p Ó= 0.5. Let Sn := X1 + · · · + Xn. Then

(7) ?a11? Mn :=
(

1−p
p

)Sn

is a martingale. Namely, h(x) = ((1 − p)/p)x is
harmonic.
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Functions of MC (cont.)

Example 2.5 (Simple Symmetric Random Walk)
Let Y1, Y2, . . . be iid with

P (Xi = 1) = P (Xi = −1) = 1/2 ,

We write Sn := S0 + Y1 + · · · + Yn. Then Mn := S2

n − n
is a martingale. Namely, f (x , n) = x 2 − n satisfies (5).

Theorem 2.6
?〈a14〉?

Let h be a subharmonic function for the Markov chain
X = (Xn). Then Mk := h(Xk) is a submartingale.
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Polya’s Urn,

One can find a nice account with more details at
http://www.math.uah.edu/stat/urn/Polya.html

or click here
Given an urn with initially contains: r > 0 red and
g > 0 green balls.

(a) draw a ball from the urn randomly,

(b) observe its color,

(c) return the ball to the urn along with
c new balls of the same color .

If c = 0 this is sampling with replacement.

If c = −1 sampling without replacement.
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Polya’s Urn, (cont.)

From now we assume that c ≥ 1. After the n-th draw
and replacement step is completed:

the number of green balls in the urn is: Gn .

the number of red balls in the urn is: Rn .

the fraction of green balls in the urn is Xn .

Let Yn = 1 if the n-th ball drawn is green.
Otherwise Yn := 0.

Let Fn be the filtration generated by Y = (Yn).
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Polya’s Urn, (cont.)

Claim 1
Xn is a martingale w.r.t. Fn.

Proof Assume that

Rn = i and Gn = j

Then

P

(

Xn+1 =
j + c

i + j + c

)

=
j

i + j
,

and

P

(

Xn+1 =
j

i + j + c

)

=
i

i + j
.
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Polya’s Urn, (cont.)

Hence

(8) E [Xn+1|Fn] =
j + c

i + j + c
·

j

i + j
+

j

i + j + c
·

i

i + j

=
j

i + j
= Xn .

�

Corollary 3.1
There exists an X∞ s.t. Xn → X∞ a.s..

This is immediate from Theorem 1.10.
In order to find the distribution of X∞ observe that:
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Polya’s Urn, (cont.)

The probability pn,m of getting green on the first

m steps and getting red in the next n − m steps is
the same as the probability of drawing altogether
m green and n − m red balls in any particular
redescribed order.

pn,m =
m−1
∏

k=0

g + kc

g + r + kc
·

n−m−1
∏

ℓ=0

r + ℓc

g + r + (m + ℓ)c
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Polya’s Urn, (cont.)

If c = g = r = 1 then

P(Gn = 2m + 1) =





n

m





m!(n − m)!

(n + 1)!
=

1

n + 1
.

That is X∞ is uniform on (0, 1): In the general case X∞

has density

Γ((g + r)/c)

Γ(g/c)Γ(r/c)
x (g/c)−1(1 − x)(r/x)−1.

That is the distribution of X∞ is Beta
(

g
c
, r

c

)
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Games

Imagine that somebody plays games at times
k = 1, 2, . . . . Let Xk − Xk−1 be the net winnings per
unit stake in game n.
In the martingale case

E [Xn − Xn−1|Fn−1] = 0, the game is fair.

In the supermartingale case

E [Xn − Xn−1|Fn−1] ≤ 0, the game is unfavorable.
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Games (cont.)

Definition 4.1
〈a19〉

Given a process C = (Cn). We say that:

(i) C is previsible or predictable if

∀n ≥ 1, Cn ∈ Fn−1 .

(ii) C is bounded if ∃K such that
∀n, ∀ω, |Cn(ω)| < K .

(iii) C has bounded increments if ∃K s.t.

∀n ≥ 1, ∀ω ∈ Ω, |Cn+1(ω) − Cn(ω)| < K
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Games (cont.)

Cn is the player’s stake at time n which is decided based
upon the history of the game up to time n − 1. The
winning on game n is Cn(Xn − Xn−1). The total winning
after n game is

(9) a18 Yn :=
∑

1≤k≤n

Ck(Xk − Xk−1) =: (C • X )n.

By definition:
(C • X )0 = 0.

Clearly,
Yn − Yn−1 = Cn(Xn − Xn−1).
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Games (cont.)

We say that

C • X is the martingale transform of X by C .
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Games (cont.)

Theorem 4.2 (You cannot beat the system)
〈a20〉

Given C = (Cn)∞
n=1

satisfying:

(a) Cn ≥ 0 for all n (otherwise the player would
be the Casino),

(b) C is previsible (that is Cn ∈ Fn−1),

(c) C is bounded.

Then C • X is a supermartingale (martingale) if X is a
supermartingale (martingale) respectively.
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Games (cont.)

Proof.

(10) E [Yn − Yn−1|Fn−1] = CnE [Xn − Xn−1|Fn−1] < 0.

Theorem 4.3
〈a21〉

Assume that C is a bounded and previsible process and
X is a martingale then C • X is a martingale which is
null at 0.
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Games (cont.)

Theorem 4.4
In the previous two theorems the boundedness can be
replaced by Cn ∈ L2, ∀n if Xn ∈ L2, ∀n.

The proofs of the one but last theorem is obvious. The
proof of the last theorem immediately follows from (f)
on slide 133 of file "Some basic facts from probability
theory".
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Stopping Times, definitions

Definition 5.1
A map T : Ω → {0, 1, . . . , ∞} is called stopping time
if

(11) ?a16?{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn, n ≤ ∞.

equivalent definition:

(12) ?a17?{T = n} = {ω : T (ω) = n} ∈ Fn, n ≤ ∞.

We say that the stopping time T is bounded if ∃K
s.t. T (ω) < K holds for all ω ∈ Ω.
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Stopping Times, definitions (cont.)

E.g. T is the time when we stop plying the game. We
can decided at time n if we stop at that moment based
on the history up to time n.
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Stopping Times, definitions (cont.)

Example 5.2
Given a process (Xn) which is adapted to the filtration
{Fn}, further given a Borel set B. Let

T := inf {n ≥ 0 : Xn ∈ B} .

By convention: inf ∅ := ∞. Then

{T ≤ n} =
⋃

k≤n

{T = k} ∈ Fn.
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Stopping Times, definitions (cont.)

Lemma 5.3
〈a37〉

Assume that T is a stopping time w.r.t. the filtration
{Fn}. Let

CT
n := ✶n≤T .

Then CT
n is previsible. That is

(13) ?a40? CT
n ∈ Fn−1.

Proof.
{

CT
n = 0

}

= {T ≤ n − 1} ∈ Fn−1.
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Stopped martingales

?〈a60〉?
Let T be a stopping time for an {Fn} filtration. For a
process X = (Xn) we write X T for the process stopped
at T :

X T
n (ω) := XT (ω)∧n(ω),

where a ∧ b := min {a, b}.

Assume that Kázmér always bets 1$ and stops playing
at time T . Then Kazmér’s stake process is:

(14) a23 C (T )
n = ✶n≤T
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Stopped martingales (cont.)

In Lemma 5.3 we proved that C (T ) is previsible (the
notion "previsible" was defined on slide # 23).
By (9), Kázmér’s winning’s process:

(C (T ) • X )n = XT∧n − X0.

That is
C (T ) • X = X T − X0.

So, by Theorems 4.2 and 4.3 we obtain

Károly Simon (TU Budapest) Markov Processes & Martingales A File 36 / 55

Stopped martingales (cont.)

Theorem 6.1
〈a22〉

Let T be a stopping time

(i)

X supermartingale =⇒ X T supermartingale.

So, in this case ∀n, E [XT∧n] ≤ E [X0]

(ii)
X martingale =⇒ X T martingale.

So, in this case ∀n, E [XT∧n] = E [X0]
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Stopped martingales (cont.)

Proof
We define C (T )

n as in (14). Clearly, C (T ) ≥ 0 and
bounded. As we saw in Lemma 5.3, C (T ) is previsible.
So, we can apply Theorem 4.2 for

(15) (C • X )n =
n

∑

K=1

Ck · (Xk − Xk−1)

=











Xn − X0, on {T ≥ n};
T
∑

k=1

(Xk − Xk−1) = XT − X0, on {T < n}.











= XT∧n − X0 .
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Stopped martingales (cont.)

That is by Theorem 4.2 we get that XT∧n − X0 is a
supermartingale (martingale ) if (Xn) is a
supermartingale (martingale) respectively. Which yields
the assertion of the theorem. �

Remark 6.2
?〈a26〉?

It can happen for a martingale X that

(16) a32 E [Xn] Ó= E [X0] .

The most popular counter example uses the Simple
Symmetric Random Walk (SSRW). First we recall its
definition and a few of its most important properties.
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Stopped martingales (cont.)

Example 6.3 (Simple Symmetric Random Walk

(SSRW))
?〈a27〉?

The Simple Symmetric Random Walk (SSRW) on Z

is S = (Sn)∞
n=0

, where

(17) ?a33? Sn = X0 + X1 + · · · + Xn,

where X0 = 0 and X1, X2, . . . are iid with
P (X1 = 1) = P (X1 = −1) = 1

2
.

We have seen that
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Stopped martingales (cont.)

Lemma 6.4 (SSRW)
?〈a34〉?

The Simple Symmetric Random Walk on Z is

(i) Null recurrent,

(ii) martingale.

The second part follows from Example 1.7. We proved
that SSRW is null recurrent in the course Stochastic
processes. To give an example where (16) happens:
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Stopped martingales (cont.)

Example 6.5
?〈a35〉?

S = (Sn) be the SSRW and let T := inf {n : Sn = 1} .

Then by Theorem 6.1, E [XT∧n] = E [X0]. However,

E [XT ] = 1 Ó= 0 = X0 = E [X0] .

Question 1
Let X be a martingale and let T be a stopping time.
Under which conditions can we say that

(18) ?a25? E [XT ] = E [X0]?
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Stopped martingales (cont.)

Theorem 6.6 (Doob’s Optional Stopping Theorem)

〈a28〉
Let X be a supermartingale and T be a stopping time.
If any of the following conditions holds

(i) T is bounded.

(ii) X is bounded and T < ∞ a.s..

(iii) E [T ] < ∞ and X has bounded increments.

then
(a) XT ∈ L1 and E(XT ) ≤ E [X0].

(b) If X is a martingale then E(XT ) = E [X0] .
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Stopped martingales (cont.)

Proof.
By Thm: 6.1 ∀n, XT∧n ∈ L1 and E [XT∧n − X0] ≤ 0.
If (i) holds then ∃N s.t. T ≤ N . Then for n = N , we
have XT∧n = XT . Hence (a) follows.
If (ii) holds then lim

n→∞
XT∧n = XT . So, by Dominated

Convergence Theorem: lim
n→∞

E [Xn∧T ] = E [XT ]. On the

other hand, by Theorem 6.1, E [XT∧n] ≤ E [X0].
If (iii) holds The answer comes from Dom. Conv.

Thm. |XT∧n − X0| =

∣

∣

∣

∣

∣

T∧n
∑

k=1

(Xk − Xk−1)

∣

∣

∣

∣

∣

≤ KT < ∞. If

X is a martingale, apply everything above also for
−X .
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Stopped martingales (cont.)

Corollary 6.7
?〈a41〉?

Assume that

(a) M = (Mn) is a martingale.

(b) ∃K1 s.t. ∀n, |Mn − Mn−1| < K1,

(c) C = {Cn} is a previsible process with
|Cn(ω)| < K2, ∀ω, ∀n.

(d) T is a stopping time with E [T ] < ∞.

Then

(19) ?a42? E [(C • M)T ] = 0 .
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Stopped martingales (cont.)

Proof.
Put together Theorem 4.3 and Theorem 6.6.

A corollary of the Optional Stopping Theorem is:

Theorem 6.8
?〈a43〉?

Assume that

(i) M = (Mn) is a non-negative supermartingale,

(ii) T is a stopping time s.t. T < ∞ a.s..

Then E [XT ] ≤ E [X0] .
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Stopped martingales (cont.)

Proof.
We know that lim

n→∞
XT∧n = XT a.s. and XT∧n ≥ 0. So

we can apply Fatou Lemma :

lim inf
n→∞

E [XT∧n] ≥ E [XT ] .

On the other hand, by Theorem 6.1 the left hand side is
smaller than or equal to E [X0].
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Awaiting for the (almost) inevitable

In order to apply the previous theorems we need a
machinery to check if E [T < ∞] a.s. holds.

Theorem 6.9
〈a44〉

Assume that ∃N ∈ N, ε > 0 s.t. ∀n ∈ N,

(20) a45 P (T ≤ n + N |Fn) > ε , a.s.

then
E [T ] < ∞.
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Awaiting for the (almost) inevitable (cont.)

Proof.
We apply (20) for n = (k − 1)N . Then the assertion
follows by mathematical induction from Homework
11.
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ABRACADABRA

The following exercise is named as "Tricky exercise" in
Williams’ book [21, p.45].

Problem 6.10 (Monkey at the typewriter)
?〈a46〉?

Assume that a monkey types on a typewriter. He types
only capital letters and he chooses equally likely any of
the 26 letters of the English alphabet independently of
everything. What is the expected number of letters he
needs to type until the word "ABRACADABRA"
appears in his typing for the first time?

The same problem formulated in a more formal way:
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ABRACADABRA (cont.)

Problem 6.11 (Monkey at the typewriter)
?〈a48〉?

Let X1, X2, . . . be iid r.v. taking values from the set
Alphabet := {A, B, . . . , Z} of cardinality 26. We
assume that the distribution of Xk is uniform. Let T be

(21) T := min {n + 10 : (Xn, Xn+1, . . . , Xn+10)

= (A, B, R , A, C , A, D, A, B, R , A)}

Find E [T ] =?

We associate a players in a Casino to the monkey:

Károly Simon (TU Budapest) Markov Processes & Martingales A File 51 / 55

ABRACADABRA (cont.)

Example 6.12 (Players associated to the

monkey)
?〈a47〉?

Imagine that for every ℓ = 1, 2, . . . , on the ℓ-th day a
new gambler arrives in a Casino. He bets:
1$ on the event: " Xℓ = A" .

If he loses he leaves. If he wins he receives 26$. Then
he bets his
26$ on the event: " Xℓ+1 = B" .

If he loses he leaves. If he wins then he receives 262$
and then he bets all of his
262$ on the event: "ℓ + 2-th letter will be R"

and so on until he loses or gets ABRACADABRA.

Now for every j we define a previsible process
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